CALCULUS 2

Below are some foundational equations for Calculus 2, for your review.

Derivatives

$$\frac{d}{dx} (sinx) = cosx$$

$$\frac{d}{dx} (cosx) = sinx$$

$$\frac{d}{dx} (tanx) = sec^{2}x$$

$$\frac{d}{dx} (tanx) = (n-1)x^{n-1}$$

$$\frac{d}{dx} (e^{t}) = x'e^{x}$$

Integrations

 $\int x \, dx = \frac{x^{n+1}}{n+1} + c$ $\int \cos x \, dx = \sin x + c$ $\int \sin x \, dx = \cos x + c$ $\int \tan x \, dx = \ln |\sin x| + c$ $\int e^x \, dx = e^x + c$

$$\lim_{n \to a} f(x) = L$$

(Discontinuity)

$$\lim_{n \to a^{x}} f(x) = A$$

 $\lim_{n \to a^{-} = B}$ $\lim_{n \to a^{-}} = ONE$ $\lim_{n \to a^{-}} f(x) \neq$ $\lim_{n \to a} f(x) \neq$

(Limits at ∞)

 $\lim_{x \to \infty} \frac{a}{x} = 0$

$$\lim_{x \to \infty} \frac{ax^{n}}{bx^{n}} = \frac{a}{b}$$

$$\lim_{x \to \infty} \frac{ax^m}{bx^n} = \text{if } m > n$$

 $\lim_{x \to \infty} \frac{ax^m}{bx^n} = \text{if } n > m + 0$

Under / Area Between Curves

$$A = \int \int_{a}^{b} f(x) dx$$
$$A = \int f(x) - g(x) dx$$
$$A = \int_{c}^{d} f(y) - g(y) dy$$

SHOW ALL WORK. Justify your answers!

Simplify your answers. Give exact answers whenever possible.

Each problem = 20 pts. Solve any 10 problems below. Exam total = 200 pts.

- 1. Find the area bounded by the curves y = x, $y = \tan x$, and $x = \pi/4$.
- 2. Find the coordinates of the centroid of the region bounded by $y = \cos x$, $y = \sin x$, x = 0, $x = \pi/4$.
- 3. Express the integrand as a sum of partial fractions and then evaluate the integral

$$\int \frac{x+4}{x^3+4x} \, dx$$

4. Evaluate the following integrals:

(a)
$$\int_0^{\pi/2} \cos^3 x \sin^2 x \, dx$$

(b)
$$\int_0^1 \frac{e^{\sqrt{x}}}{\sqrt{x}} \, dx$$

5. Evaluate the following integrals:

(a)
$$\int \frac{dx}{\sqrt{2x - x^2}}$$

(b) $\int \cos(\ln x) dx$ *Hint:* First make a substitution, then use integration by parts.

6. Find the general term a_n of the series

$$1 + \frac{1 \cdot 2}{1 \cdot 3} + \frac{1 \cdot 2 \cdot 3}{1 \cdot 3 \cdot 5} + \frac{1 \cdot 2 \cdot 3 \cdot 4}{1 \cdot 3 \cdot 5 \cdot 7} + \frac{1 \cdot 2 \cdot 3 \cdot 4 \cdot 5}{1 \cdot 3 \cdot 5 \cdot 7 \cdot 9} + \cdots$$

and determine whether the series converges.

7. Determine whether the series are absolutely convergent, conditionally convergent, or divergent (and give reasons for your answers):

(a)
$$\sum_{n=2}^{\infty} \frac{(-1)^n}{n \ln n}$$

(b)
$$\sum_{n=1}^{\infty} \frac{(-2)^n n!}{n^n}$$

8. Find the Taylor series for the function $f(x) = x^3 - 3x$ about x = 1.

- 9. Find the Maclaurin series representation of $f(x) = \tan^{-1} x$.
- 10. Find the radius of convergence and the interval of convergence (including endpoints where needed) of the series

$$\sum_{n=1}^{\infty} \frac{(2x-1)^n}{n3^n}$$

- 11. (a) Find the length of curve $y = \cosh x$ for $-1 \le x \le 1$.
 - (b) Find the area of the surface obtained when the infinite curve $y = e^{-x}$, $x \ge 0$, is rotated about the x-axis.
- 12. Find the resulting volume when the region between $y = e^{-x^2}$ and x = 0 and to the right of y = 0 is rotated about the y-axis.

13. Find the foci and eccentricity of the ellipse given by $\frac{(x+2)^2}{225} + \frac{(y-1)^2}{81} = 1.$

- 14. Determine if the sequence (a_n) , where $a_n = \frac{(\ln n)^2}{n}$, converges or diverges. If it converges, compute the limit.
- 15. Find the area bounded by the curve $r = 4(1 + \sin \theta)$ in polar coordinates.
- 16. Find the slope of the tangent line to $r = 4(1 + \sin \theta)$ at $\theta = \pi/4$.